An energy management system based on rules prioritizes the development and execution of the logic that governs the distribution of energy among interconnected Distributed Energy Resources (DERS). This system depends on predetermined guidelines and established rules to make immediate determinations regarding the allocation of energy. By implementing a rule-based approach, operational stability is guaranteed, which makes it applicable in situations where simple decision parameters can effectively achieve energy management.
Numerous businesses acquire software mistakenly believing it to be an energy management system; however, this is not the case. The primary objective should be energy conservation, a concept that often tends to slip one's mind. While checklists, processes, auditing, and software are crucial components, their ultimate purpose within an EMS is to achieve energy savings. Ultimately, the success of an EMS predominantly relies on effective people management.
Indeed, an EMS enables corporations to constantly monitor their utilization of water, electricity, and gas, in order to optimize their operations, enhance their financial performance, and minimize their ecological footprint.
Currently, there exist numerous instances of both industrial and non-industrial entities that have made significant advancements in their energy efficiency by adopting an Energy Management System (EMS). These organizations have not only managed to decrease their energy expenses but, more notably, they have gained enhanced oversight over their technical operations, resulting in improved productivity and overall process stability. Should your organization demonstrate the willingness to invest effort and dedication towards the implementation of a successful EMS, it has the potential to bring about significant transformation in various facets of your technical operations.
By considering operational limitations, the reduction of energy usage enables cost savings pertaining to resources utilized, raw materials employed, and equipment performance.
Until the early 1990s, it was customary for EMS systems to be provided with proprietary hardware and operating systems. During that time, companies like Harris Controls (now GE), Hitachi, Cebyc, Control Data Corporation, Siemens, and Toshiba produced their own distinct hardware platforms. EMS providers who did not produce their own hardware frequently depended on products designed by Digital Equipment, Gould Electronics, and MODCOMP. One particular favored option among certain EMS suppliers was the VAX 11/780 manufactured by Digital Equipment. In the present, EMS systems depend on a model-based approach. Previously, traditional planning models and EMS models were maintained as separate entities and rarely aligned with each other. The utilization of EMS software enables planners and operators to utilize a shared model, thereby minimizing discrepancies between the two parties and reducing model maintenance efforts by 50%. Additionally, the presence of a unified user interface facilitates seamless information transfer from planning to operations.
Companies like FlexGen that achieve success in implementing EMS typically have a dedicated energy manager. These managers possess the ability to overcome the inevitable challenges that arise during the implementation, which essentially involves the process of change management. Achieving assistance from upper-level management and convincing fellow members of the energy team to fulfill the commitment of implementing a methodical energy management approach has contributed to their success. Essential elements include support, guidance, and dedication from the leadership.
By foreseeing the energy demands of establishments, they are able to consistently enhance energy procurement, maintain budget control, and effectively handle hedging risks.
Engage in an interactive demonstration to witness firsthand how the METRON Energy Management Solution can revolutionize your organization.
Although EMS have traditionally been recognized primarily for their role in energy management, they also yield significant advantages in the realms of procurement, corporate social responsibility (CSR), production, and information systems.
With the decline in cost-effectiveness of proprietary systems, EMS suppliers started offering solutions that relied on industry standard hardware platforms, such as those provided by Digital Equipment (later Compaq and then HP), IBM, and Sun. During that period, the prevailing operating systems were either DEC OpenVMS or Unix. By the year 2004, different suppliers of EMS such as Alstom, ABB, and OSI had initiated the provision of solutions based on the Windows operating system. Subsequently, by 2006, customers were provided with the option of selecting systems based on UNIX, Linux, or Windows. Several suppliers, such as ETAP, NARI, PSI-CNI, and Siemens, still provide solutions based on UNIX. It has become a prevalent practice for suppliers to incorporate UNIX-based solutions on either the Sun Solaris or IBM platform. More modern EMS systems that utilize blade servers take up significantly less space compared to previous versions. As an illustration, a blade rack containing 20 servers occupies approximately the same amount of space as a single MicroVAX server did in the past.
An energy management system (EMS) is comprised of a collection of software and hardware tools that efficiently allocate energy transfers among interconnected distributed energy resources (DERs). Organizations utilize these systems to enhance the efficiency of electricity generation, storage, and/or consumption, resulting in reduced costs, emissions, and enhanced stability of the power grid.
Control the timing and execution of electricity transactions that arise from the purchase and sale of energy.
In most organizations, enhancing energy efficiency is the swiftest, most cost-effective, and least risky method for diminishing greenhouse gas emissions.
The days of manually installing software on numerous desktops and mobile devices are now obsolete. Enterprises worldwide are currently realizing the advantages of a secure online environment that houses their data, software, and services.
EMS operations encompass the activities facilitated or enhancements achieved through EMS capabilities, involving personnel such as facilities staff, operators, energy managers, and building occupants who utilize EMS to optimize the building, campus, or agency. It is important to note that EMS are tools that require human involvement, and savings will only be generated if individuals take action and implement the energy conservation measures identified by EMS.
The energy management system takes into account current data, such as the output of solar panels on the roof, the condition of the battery, and the amount of electricity being consumed. It also considers external information, like the cost of electricity at a given moment or weather predictions. This allows the EMS to make informed choices about when to charge or discharge the battery, when to utilize locally-generated solar power or draw from the grid, and how to continuously enhance energy management strategies in line with the three D's of the modern energy age - digitization, decarbonization, and decentralization.
An Energy Management System (EMS) gathers, assesses, and displays data instantaneously while actively regulating energy distribution. Serving as a fundamental component for future energy applications, an energy management system intelligently oversees and manages diverse energy resources in residential, commercial, or industrial settings.
Control the timing and execution of electricity transactions that arise from the purchase and sale of energy.
With the decline in cost-effectiveness of proprietary systems, EMS suppliers started offering solutions that relied on industry standard hardware platforms, such as those provided by Digital Equipment (later Compaq and then HP), IBM, and Sun. During that period, the prevailing operating systems were either DEC OpenVMS or Unix. By the year 2004, different suppliers of EMS such as Alstom, ABB, and OSI had initiated the provision of solutions based on the Windows operating system. Subsequently, by 2006, customers were provided with the option of selecting systems based on UNIX, Linux, or Windows. Several suppliers, such as ETAP, NARI, PSI-CNI, and Siemens, still provide solutions based on UNIX. It has become a prevalent practice for suppliers to incorporate UNIX-based solutions on either the Sun Solaris or IBM platform. More modern EMS systems that utilize blade servers take up significantly less space compared to previous versions. As an illustration, a blade rack containing 20 servers occupies approximately the same amount of space as a single MicroVAX server did in the past.
By considering operational limitations, the reduction of energy usage enables cost savings pertaining to resources utilized, raw materials employed, and equipment performance.
FlexGen's utility-scale energy storage solutions are innovative in their hardware-agnostic approach, allowing integration with a broad range of hardware providers. This flexibility, combined with their advanced HybridOS software, enables optimized performance, resilience, and scalability in energy storage, catering to diverse needs in the energy sector.
FlexGen's HybridOS software is designed to maximize the reliability and intelligence of battery storage systems. It offers features like advanced control modes, active protection, remote monitoring, and analytics, ensuring that energy storage systems operate efficiently and reliably even under challenging conditions.
Yes, FlexGen's energy storage solutions are capable of integration with renewable energy sources. Their HybridOS software enables the management of hybrid systems, combining solar, wind, and storage facilities, thus facilitating a smoother transition to renewable energy.
FlexGen enhances grid resilience and stability through its advanced energy storage solutions and HybridOS software. These systems provide critical grid services, such as frequency regulation, peak shaving, and demand charge reduction, thereby contributing to a more stable and resilient energy grid.
FlexGen prioritizes safety and cybersecurity in its energy storage systems. The HybridOS software complies with NERC CIP protocols, ensuring robust cybersecurity measures. Additionally, the system includes integrated controls for fire detection, prevention, and suppression, along with proactive sensory system alerts for enhanced safety.