1Battery Storage Software

Energy Storage Operating System

The third division comprises public infrastructure, commercial establishments, and industrial facilities. Within this category, energy storage systems will primarily be deployed to assist with load management during peak periods, facilitate the integration of on-site renewable energy sources, optimize self-consumption, serve as a backup power source, and support grid-related services. It is our belief that BESS holds the capacity to decrease energy expenses in these regions by a staggering 80 percent. The case for implementing BESS is particularly compelling in countries like Germany, North America, and the United Kingdom, where demand charges are frequently imposed.

From a technological standpoint, the primary factors that customers prioritize when it comes to batteries are cycle life and cost-effectiveness. Presently, lithium-ion batteries are prevailing because they fulfill customer requirements. In the past, the dominant choice for battery chemistry was a nickel manganese cobalt cathode. However, lithium iron phosphate (LFP) has emerged as a more cost-effective alternative, surpassing it in popularity. (Customers of lithium iron phosphate are willing to acknowledge that LFP may have certain limitations compared to nickel batteries, particularly in terms of energy density.) Nevertheless, the scarcity of lithium has led to the exploration of various intriguing and promising battery technologies, with a particular focus on cell-based options like sodium-ion (Na-ion), sodium-sulfur (Na-S), metal-air, and flow batteries.

In an emerging market such as this, it is crucial to grasp the potential profits and profit margins linked to various products and services. The BESS value chain initiates with manufacturers responsible for producing storage components like battery cells, packs, inverters, housing, and other necessary elements within the system balance. Based on our calculations, the providers involved in this particular sector of the chain are expected to receive approximately 50% of the profit pool generated by the BESS market.

Exploring the realm of software is of utmost importance, particularly within the context of storage systems. It is anticipated that the value of these systems will shift from mere hardware to encompass the software that governs and enhances the overall functionality, presenting an opportunity to attract a wider customer base and achieve greater profitability. It is important for BESS players to cultivate these abilities at an early stage.

The main clientele for FTM installations consists of utilities, grid operators, and renewable developers who seek to address the sporadic nature of renewables, offer grid stability services, or avoid expensive investments in their grid. Typically, the BESS providers in this sector are either vertically integrated battery manufacturers or prominent system integrators. They will set themselves apart based on factors such as price and scope, dependability, their history of successfully managing projects, and their aptitude for creating energy management systems and software solutions for grid optimization and trading.

BESS EMS, when contrasted with solar SCADA, presents considerably greater complexity. Several owners have come to realize this through personal experiences that were challenging. The EMS assumes a significant level of accountability in relation to its cost, particularly for projects exceeding 100 MWh in size. In such cases, there are two cost metrics that are taken into consideration.

Battery Storage Integration

According to our analysis, the current situation has presented a notable prospect. Our findings indicate that over $5 billion was allocated to BESS investments in 2022, marking an almost threefold rise compared to the previous year. It is anticipated that the worldwide BESS market will achieve a valuation ranging from $120 billion to $150 billion by 2030, surpassing its current size by more than twofold. However, this market remains fragmented, posing challenges for numerous providers who are uncertain about their competitive positioning and strategies. It is crucial to seize this moment and determine the prime areas of growth in the swiftly advancing BESS market, while also making the necessary preparations for them.

I consent to receiving news and promotional material from Schneider Electric and its affiliated companies through electronic channels, such as email. Additionally, I acknowledge that data regarding my interaction with these emails, including the tracking of opens and clicks using hidden pixels within images, may be collected in order to assess the effectiveness of our communications and enhance their quality. For more comprehensive information, kindly refer to our Privacy Policy.

The commercial and industrial (C&I) sector, which ranks as the second-largest category, is projected to experience a compound annual growth rate of 13 percent according to our forecasts. This growth should result in annual additions ranging from 52 to 70 GWh by 2030 for the C&I sector.

Battery Storage Integration

Battery Storage Controls

In conclusion, a percentage ranging from 10 to 20 is linked to sales entities, project development organizations, as well as other endeavors focused on acquiring customers and commissioning (Exhibit 4).

Considering the multitude of customer segments, varying business models, and imminent changes in technology, this question holds significant importance. Here are four strategies that could potentially lead to success in the market:

The battery management system (BMS) is frequently mistaken for the EMS. The BMS is a straightforward system that serves two purposes: 1) enabling or disabling battery operation and 2) ensuring the safety of the batteries. When initiating a BESS, the EMS will instruct the BMS to activate the batteries (establish the DC bus). The BMS will execute this command only if it detects a safe condition. During operation, if the BMS detects parameters that are exceeding their acceptable range, it will prompt the EMS to decrease power output (in cases where parameters breach fault thresholds, the BMS will activate the opening of rack contactors).

Battery Storage EMS

The financial strategies for utility-scale Battery Energy Storage Systems (BESS) are greatly influenced by the unique characteristics of the regions in which providers establish themselves. Typically, players in this sector opt for a revenue stacking approach, which involves aggregating incomes from multiple sources. They may engage in supplementary offerings, arbitrage, and capacity auctions. For instance, numerous BESS installations in the United Kingdom presently focus on ancillary services like frequency regulation. In Italy, there are talented players who have achieved success by emerging victorious in one of the country's capacity auctions that prioritize renewable energy. On the other hand, in Germany, the focus is more on evading expensive grid enhancements in order to seize opportunities. The successful players in the FTM utility sector have recognized the importance of tailoring their approach to individual countries and their regulations, rather than relying on a singular, all-encompassing strategy.

Battery Storage EMS
Energy Management System
Energy Management System

Recognize a neglected requirement within the value chain. In an emerging industry like this, it is beneficial for companies to consider additional products and services they could expand into, either through internal growth or mergers and acquisitions. As an example, is there any hindrance preventing a system integrator from conducting in-house battery packaging? Or collaborating with a battery manufacturer to jointly develop a new cell chemistry? Moreover, is there any limitation preventing a battery manufacturer from incorporating system integration or service capabilities to attract a particular BESS sector, like utilities?

C&I is divided into four subsegments, with the initial one being electric vehicle charging infrastructure (EVCI). According to the McKinsey Center for Future Mobility, electric vehicles (EVs) are projected to experience a significant increase in market share, rising from approximately 23 percent of global vehicle sales in 2025 to 45 percent by 2030. This rapid growth will necessitate the widespread expansion of standard charging stations and superchargers, thereby exerting strain on existing grid infrastructure and requiring expensive and time-consuming upgrades. In order to prevent this situation, charging station companies and owners might choose to install a Battery Energy Storage System (BESS) on their premises. Collaborations have already been established between BESS providers and electric vehicle manufacturers to construct additional Electric Vehicle Charging Infrastructure (EVCI), even in secluded areas.

As the next stage of objectives outlined in the Paris Agreement draws near, governmental bodies and various organizations are actively seeking to enhance the uptake of renewable energy sources. Certain regions, heavily reliant on energy consumption, offer additional incentives to encourage the exploration of alternatives to conventional energy methods. In Europe, the motivation arises from an energy crisis, while in the United States, it originates from the Inflation Reduction Act, a legislation passed in 2022 that designates $370 billion for clean-energy investments.

Energy Storage Software

The project's operating system, known as the energy management system (EMS), assumes responsibility for controlling (charging and discharging), optimizing (revenue and health), and ensuring safety (electrical and fire). The EMS operates in conjunction with the inverters, battery management system (BMS), breakers, and fire system to coordinate their functions. However, what occurs in the event that it does not yield satisfactory results?

The market for BESS (Battery Energy Storage Systems) is currently experiencing a rapid phase of growth and development. Companies that fail to take action at this pivotal moment risk losing out on significant opportunities. Success in this market will be determined by four essential factors that companies must demonstrate. As the energy transition gains momentum, these victors will generate value in an emerging market.

The Chief Executive Officer of FlexGen, a provider specialized in controlling energy storage software solutions, explains the definition and necessity of upgrading or retrofitting an energy management system (EMS) in operational battery energy storage system (BESS) projects.

Energy Storage Software

Frequently Asked Questions

FlexGen's HybridOS is an advanced energy management software designed to optimize the performance and efficiency of battery energy storage systems. It integrates seamlessly with renewable energy sources, providing intelligent control, real-time monitoring, and predictive analytics to enhance energy storage and distribution.

FlexGen specializes in advanced energy storage solutions, including battery energy storage systems (BESS), energy management software (HybridOS), and comprehensive lifecycle services for optimizing energy storage assets.

Absolutely, FlexGen offers utility-scale storage solutions that support grid stability, renewable integration, and energy management for utilities, enhancing the overall efficiency and reliability of the power grid.